CODE 70. Unique Paths II

版权声明:本文为博主原创文章,转载请注明出处,谢谢!

版权声明:本文为博主原创文章,转载请注明出处:http://blog.jerkybible.com/2013/10/07/2013-10-07-CODE 70 Unique Paths II/

访问原文「CODE 70. Unique Paths II

Follow up for “Unique Paths”:
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively
in the grid.
For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]

The total number of unique paths is 2.
Note: m and n will be at most 100.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
// Note: The Solution object is instantiated only once and is reused by
// each test case.
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
int[][] sum = new int[m][n];
sum[0][0] = obstacleGrid[0][0] == 1 ? 0 : 1;
for (int i = 1; i < m; i++) {
if (obstacleGrid[i][0] == 1) {
sum[i][0] = 0;
} else {
sum[i][0] = sum[i - 1][0];
}
}
for (int i = 1; i < n; i++) {
if (obstacleGrid[0][i] == 1) {
sum[0][i] = 0;
} else {
sum[0][i] = sum[0][i - 1];
}
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if (obstacleGrid[i][j] != 1) {
sum[i][j] = sum[i - 1][j] + sum[i][j - 1];
} else {
sum[i][j] = 0;
}
}
}
return sum[m - 1][n - 1];
}
Jerky Lu wechat
欢迎加入微信公众号